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ABSTRACT 

We compute the character of the oscillator representation of Sp(2n, R). 

The proof, which uses coherent continuation, is completely algebraic. We 

show that the character of the difference of the two halves of the os- 

cillator representation is the quotient of Weyl denominators of type Bn 

and Cn, and thus has the form of a transfer factor for Sp(2n, N) and 

so(2n + I). 

1. I n t r o d u c t i o n  

The oscillator representation w of the metaplectic group Sp(2n, R) is the smallest 

representation of Sp(2n, R) which is genuine, i.e. does not factor to Sp(2n, R). 

The main result of this paper is a short computation of the global character of 

~. Formally the argument is very simple and we sketch it in the introduction. 

We will be more precise starting in Section 2. 

Let 7FDS be the holomorphic discrete series representation of Sp(2n, ]~) with 

the same infinitesimal character as that of the oscillator representation. Let 

: ~d . . . .  @ 0 ) o d  d be the decomposition of w into irreducible representations, and 

write w . . . .  - -  ~X)od d for the difference in the Grothendieck group. 

It follows from general principles that 

(-1)q 
(1.1) ~deven -- r176 - -  n!  ~ w " ~ D S .  

wEW 
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Here q = �89 dim(Sp(2n,•) /K) = n(n + 1)/2, where K is a maximal compact 

subgroup. Also W denotes the complex Weyl group of type C~, and ~r -* w �9 

is the coherent continuation action of W on virtual modules. 

The global character ODS of 7rDS is known explicitly as a function on the 

regular elements [5], [10]: 

= + ~w6WK sgn(w) e~~ 
( 1 . 2 )  _ 

Here WK is the Weyl group of K,  A is the Harish-Chandra parameter of ~rDS and 

the product in the denominator is over the positive roots A + defined by A. This is 

Harish-Chandra's formula on the compact Cartan subgroup, and appropriately 

interpreted holds on any Cartan subgroup by virtue of the fact that "fiBS is a 

holomorphic representation. 

Let 0even,odd be the global character of O2even,odd , as a function on the 

regular set. It follows immediately from (1.1), (1.2) and the definition of 

coherent continuation that 

• ~ -~ew sgn(w) ew;~ 
(1.3) 0even - 0odd = H . ( e ~ / 2  _ e - " / ~ )  

(the precise statement is Theorem 3.11). Furthermore A = (n - 1, n - 32,..., ~)1 

and, formally at least, this is one-half the sum of the positive roots for the root 

Therefore by the usual product formula the numerator of 

(1.4) H (e~/2 - e-~/2)" 
~6A+(B~) 

Write A + (Cn) for the positive roots appearing in (1.2). The long roots of A + (Bn) 

are the same as the short roots of A+(Cn), whereas the short roots of A+(Bn) 

are one-half times the long roots { a l , . . . ,  an} of A+(Cn). Thus 

(1.5)(a) Oeven -- 0od d : -~- H A + ( B n ) ( e ~  -- e - ~ / 2 )  

I-I<,+(c.) ( e~/2 - e - ~ / 2 )  
• 

(b) = 
H ~ = l ( e ~ / 4  + e -~ j /4 )"  

Now suppose (for simplicity) that  G is a connected complex reductive group, 

and g is a semisimple element of G. Let 7r be a finite dimensional representation 

system of type Bn. 

(1.3) equals 
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of G such that for every weight c~ of r ,  - a  is also a weight. Write the weights of 

~r as a disjoint union S U - S .  Then 

det(1 + 7r(g)) = YI (1 + e~(g))(1 + e-'~(g)) 
a E S  

(1.6) = I I  ( e-'~/2 + e~/2)(e~/2 + e-'~/2)(g) 
aES 

= l-I ( e~ + 
o~ES 

The weights of the standard representation of Sp(2n, R) are +al /2 , . . . ,  +an~2. 
This observation applied to (1.5)(b) gives 

1 
((~even --  (~odd)(g)  2 - -  det(1 + g) 

where g is the image of ~ in Sp(2n, I~). Therefore 
r 

(1 .7 )  (~even --  ~ o d d ) ( g )  - -  c ( g )  
] det(1 + g)]�89 

with c(~) 4 -- 1. 

With a little extra work, mostly having to do with the covering group, these 

formal arguments may be made precise, and the constants computed (Theorem 

3.11 and Proposition 4.5). 

We also describe an alternative formulation. We write a Cartan subgroup/~ 

of Sp(2n, R) in terms of a certain cocycle, closely related to the Rao cocycle [11], 

so an element o f / t  is a pair (g; e) with g E H and e = +1. Then (1.7) takes the 

simple form (Proposition 5.11) 

s 
( 1 . 8 )  (0even --  0 o d d ) ( g  ; (~) - -  

~/det(1 + g) 

Actually the oscillator representation depends on a choice of an additive character 

of R, which enters on the right hand side of (1.8) in the choice of a branch of the 

square root. 

Finally Weven and 02od d have distinct central characters. Evaluating (1.3) and 

(1.7) at an element zt), where z is a central element lying over the element - I  of 

Sp(2n, R), gives formulas (Propositions 3.18 and 4.7) for the global character of 

o3 = 02even @ ~odd. However, it is interesting to note the analogue of (1.8) has a 

more complicated numerator; similarly the analogue of (1.3) is less natural. 
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The character of the oscillator representation has been computed in ([14] ,w 

Th~or~me 2), using very different methods. Statement (1.7) (for Weven | ~odd)  

appears in [7] (without the computation of c(~)). This method of proof may be 

applied to compute characters of small representations of other groups. 

In some sense (1.5)(a) is the main result of this paper. We write this as 

Dso 
( 1 . 9 )  0 ~ v ~ .  - 0 o d d  - -  Dsp 

where Dsp, Dso are Weyl denominators for Sp(2n, ]~) and SO(2n+1) respectively. 

Thus 0evCn -- Oodd has the form of a transfer factor [9] between characters of 

Sp(2n, R) and SO(2n + 1). The formulas of this paper have been written with 

this application in mind, and we give a few details. 

There is a bijection between stable, (strongly) regular semisimple conjugacy 

classes of SO(n + 1, n) and Sp(2n, R) - -  two such conjugacy classes correspond 

if they have the same non-trivial eigenvalues. Equivalently, if H is a Cartan 

subgroup of SO(n + 1, n) we may choose an isomorphism r H -~ H'  with a 

Cartan subgroup of Sp(2n, R). Let O be a stable invariant eigendistribution 

on SO(n + 1, n), identified with a function on the (strongly) regular semisimple 

elements. 

We define a function ~ on Sp(2n, JR) by 

O'(g') -- O(g)(Oeven -- 0odd)(g') (g' e Sp(2n, R)) 

where g corresponds to the image p(g') C Sp(2n, ~) of g'. This is independent of 

the choice of g since O is stable. 

Roughly speaking, using the identification of H and H',  a stable invariant 

eigendistribution for SO(n + 1, n), when multiplied by 0even - ~odd, is a candi- 

date for an invariant eigendistribution on Sp(2n, R). This follows from Harish- 

Chandra's formula for the restriction of an invariant eigendistribution to a 

Caftan subgroup [4]: ~ and O' have the same "numerator" on H - H'.  This 

can be made precise, and the map O -~ O ~ is a bijection between stable invariant 

eigendistributions on SO (n+ 1, n) and genuine, stable invariant eigendistributions 

on Sp(2n, ~). This application is discussed elsewhere [1]. 
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2. C o h e r e n t  c o n t i n u a t i o n  

We fix once and for all a real vector space W of dimension 2n equipped with a 

non-degenerate symplectic form <, >, and we fix a standard basis el . . . .  , fn of 

W. The isometry group of <, > is then Sp(2n,]~) realized as the set of 2n • 2n 

( I ' )  T h e r e a l a n d  real matrices satisfying gjtg-1 =_ j, where J = - I n  " 

complex Lie algebras are denoted sp(2n, X) and sp(2n, C) respectively, realized 

as real or complex matrices X satisfying XJ + J tX = 0. Let Sp(2n, •) be the 

two-fold cover of Sp(2n, R), with covering map p: Sp(2n, ~) --~ Sp(2n, ]~). It is 

well known that  Sp(2n, R) is unique up to isomorphism. In Section 5 we will 

choose a particular model of Sp(2n, R), but until then this will not be necessary. 

Let /~ be the inverse image in Sp(2n, R) of the usual maximal compact sub- 

group K = Sp(2n, ~) N SO(2n,]~) ~_ U(n) of Sp(2n, R). Unless otherwise noted 

by "module" we mean admissible (sp(2n, C),/~)-module, and by virtual module 

we mean an element of the corresponding Grothendieck group, i.e. a formal finite 

linear combination of irreducible modules with integral coefficents. 

Given a non-trivial unitary additive character ~ of R the associated oscillator 

representation w(r is the direct sum w(~b) = w(r . . . .  ~ 0 ) ( r  , where W(r 

and w(~b)odd are irreducible unitary representations and ~(r contains a /~ -  

invariant line. (In the usual model W(~b)even,odd is realized on a space of even 

(odd) functions, respectively.) According to the Hermitian symmetric structure 

write sp(2n, C) = t~ G p = ~ ~3 p+ | p-  as usual. Define ~b+(x) = e • We label 

p• so that  ~.d(~/3• have cyclic vectors under the action of p• equivalently 

a vector annihilated by p~:. We reserve the term "highest weight module" for a 

module with a vector annihilated by p- .  

( X )  withX=diag(al,...,an). For a l , . . . , a n  C C let ( a l , . . . , a n )  = - X  

The set of such elements with ai E ~ (resp. C) forms the real (resp. complexified) 

Lie algebra to (resp. t) of a compact Caftan subgroup T of Sp(2n, R). For H 

a subgroup of Sp(2n, R) we let /~ denote its inverse image in Sp(2n, R). The 

compact Cartan subgroup 7 ~ of Sp(2n, R) is connected and abelian (cf. Section 

3). We write ( a l , . . . ,  an) for the element of t* = Horn(t, C) taking (Z l , . . . ,  zn) 

to i ~ ajzj. Then the set of roots of t in sp(2n, C) is {5=e~ 5= ej, 5=2e~} as usual. 

The weight lattice of t in sp(2n, C) is A = { ( a l , . . . , a n )  l a~ E Z}. Let A+ = 

{e~ - ej [i < j} and A+ = {2e~, e~ + ej}, the positive compact and non-compact 

roots, and let A+ = A+ U A+. Write Pc, Pn and p for one-half the sum of 
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the positive roots in these sets respectively. The finite-dimensional irreducible 

representations of /~  are parametrized by highest weights ( a l , . . . ,  an) with al _> 

1 for all i. a2 ~_ �9 " ~_ a n ,  a i  �9 Z for all i or a~ �9 Z + 

The infinitesimal character of w(r is A0 ( n -  �89 3 1 = - ~ , ' " ,  3) (identified 

via the Harish-Chandra homomorphism). We work entirely in the category of 

representations with this infinitesimal character. 

D e f i n i t i o n  2 .1:  Let r be a virtual module with infinitesimal character )~0- Let 

be a coherent family based on T and 

+ A = { ( a l , . . . ,  I a, �9 Z + �89 

([15], Definition 7.2.5 and Corollary 7.2.27). For w E W = W(sp(2n, C), t) define 

w .  r = r  

([15], Definition 7.2.28). This is a virtual module with infinitesimal character A0. 

A few comments are in order since we are not precisely in the setting of 

[15]. Since T is connected we freely identify the formal symbols A0 + A of ([15], 

Definition 7.2.5) with elements of t*. Although Sp(2n, R) is not a linear group, 

([15], Corollary 7.2.27) carries over without any changes. The integral roots 

A(Ao) and integral Weyl group W(A0) of A0 are of type D~; however ([15], 

Lemma 7.2.29) is easily seen to hold for the larger set {w E W [wA0 - A is a sum 

of weights} which in our case is all of W. 

We note that  the more detailed results on wall-crossing of ([15], w fail with 

W in place of W(A0) (cf. Remark 2.10). 

Now let 7rDS be the holomorphic discrete series representation of Sp(2n, JR) 

with infinitesimal character Ao. This has lowest K-type (n + �89 n + �89 and 

is a highest weight module. Let 

(2.2) #DS = ~ sgn(w)w " TrDS. 
wEW 

THEOREM 2.3:  

7rDS = ( - -1)qn! [~( r  - -  02(r 

P r o o f :  It follows immediately from the definition that  all simple roots a of 

A+(Ao) = A + n A(A0) are in the r-invariant [15] of ~rDS. Therefore by ([16], 

Corollary 4.7) any irreducible summand a of ~DS has Gelfand-Kirillov dimension 
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n. Since the irreducible summands of a highest weight module tensored with a 

finite dimensional representation are all highest weight modules, this holds also 

for a. By the classification of highest weight modules for Sp(2n, R)[31, the only 

possibilities for a are r162 . . . .  and 0d(~/d+)od d. Thus 

~rDS --~ a0d(•+)even q- bod(r d 

for some integers a, b. To evaluate a,b we use the following Blattner-type 

formula.* Let m(#, #DS) denote the multiplicity of a K-type # in frDs. 

PROPOSITION 2.4: Let # be an irreducible representation of ~[ (identified with 

its highest weight). Let Q denote the Kostant multiplicity function for the set 

a +  [8]. Then 

m(#, frDS) = y ~  ~ sgn(w) sgn(y)Q(y(# + pc) - (wh0 + ,n)).  
w 6 W  y6WK 

This is well-known to the experts, but for lack of a reference we give a proof. 

Proo~ We prove the stronger statement 

(2.5) re(p, w .  ~rDS) = ~ sgn(y)Q(y(p + pc) - (w-lA0 + pn))- 
y6WK 

W r i t e  7FDS as a derived functor module R~(Ao), also satisfying T4~(A0) = 0 for 

z # S ([17], Theorem 6.8). Here q = t@ u is the Borel subalgebra defined by A+ 

1 d im(K/T)  = n(n - 1)/2. (i.e. making A0 dominant), and S = 

Thus 

m ( , ,  w.  - . s )  = m ( , ,  w-  
S - i  i 

---- m(#, w.  y ~ ( - 1 )  T4q(Ao)). 
i 

By ([15], Corollary 7.2.10), this equals 

S-i i - i  m(#, ~-'~(-1) R,(w Ao)). 
i 

Now (2.5) follows from a Blattner formula ([151, Theorem 6.3.12); see also ([181, 

Theorem 6.5.3). 

* We thank the referee for pointing out that the proof may also be completed by 
considering #DS as a Verma module, and applying standard results in this category. 
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It  is not difficult to evaluate the sum of Proposition 2.4 for ~teven : ( 1  . . . .  , 1 )  

and Podd = ( 3  1 1), the lowest K-types of W(r odd respectively. Since 2 5 ' ' ' " 2  

A + is invariant under W K ,  YPn = Pn and Q(yT)  = Q(r)  for all y E W K  and all 

T. Replacing w by y - lA  and changing variables shows 

(2.6) m ( # ,  frDS) = n! E s g n ( w ) Q ( p  + pc - pn - wA0). 
wEW 

Define w0 by: wopc = Pc and wopn = -Pn;  the length of Wo is the number of 

positive non-compact roots, i.e. q = n(n  + 1)/2. Let 7 = #~v~n + Pc - pn = 
1 3 1 ( 2, 2 , ' " , - n  + 5)" Then w0A0 = 7, and replacing w by wwo gives 

(2.7) ~Yt(~t . . . . .  ~DS) = n!(--1) q E sgn(w)Q(r  - w~-). 
wEW 

It  is easy to see Q ( 7 - w v )  is non-zero if and only if w = 1, giving m ( #  . . . . .  frDS) = 

n!(--1)q. 

The computat ion for ~tod d is similar, with 7- replaced by ~- + (1, 0 , . . . ,  0), and 

w0 replaced by s2e:wo. It  follows that  rn ( t todd ,  ~DS) = - n ! ( - 1 )  q. This completes 

the proof of Theorem 2.3. 

The Weyl group W ( D n )  of type D~ is embedded naturally in W. Let r W 

4-1 be the corresponding quotient map: 

(2.8)(a) 1 ~ W(D,~) -~ W ~ Z/2Z  ~ 1. 

For later use we note that  r = sgn(w) sgn(p(w)) where p: W ---* W K  is given 

by 

(2.8)(5) 1 --~ (Z/2Z)  ~ ~ W v W K  ~-- S n ~ 1. 

The next result is a corollary of the proof of Theorem 2.3. 

COROLLARY 2 .9 :  

E 
r 

E 

s g n ( w ) w .  TrDS = n!(--1)qw(e+)even, 

sgn(w)w.T:DS = --rt!(--1)qW(r . 
r 

For any a with r -- -I, 

o .  = 

Dualizing, the corresponding result holds for the antiholomorphic discrete 

series representation 7r~s and ~0(~b-)even, oV(r 



Vol. 98, 1997 OSCILLATOR REPRESENTATION 237 

Remark 2.10: The root 2en is simple for A +, but is not in the integral root 

system A(A0). Neverthless the action of a = s2e~ is defined. This is an example 

of "exotic" wall-crossing (though not of an integral wall). In particular a takes the 

irreducible representation w(r . . . .  to an irreducible representation (w(r 

something which is forbidden for ordinary (integral) wall crossing ([15], Corollary 

7.3.19). 

i where / is any discrete series Remark 2.11: Let 7rDŜ I = ~ sgn(w)w "~DS 7rDS 

representation with infinitesimal character A0. By Harish-Chandra's character 

formula the characters of #DS and #~s  have the same restriction to the elliptic 

set, and it follows that  

^ !  
7FDS ~- a [ o 3 ( ~ / ) + )  . . . .  - -  o 3 ( ~ 2 + ) o d d ]  -~- b [ o 3 ( ~ ) _ )  . . . .  - o g ( l / ) - ) o d d ]  

for some integers a + b = (-1)qn!.  However, the evaluation of a, b by means of 

Proposition 2.4 is not at all easy outside of the holomorphic/anti-holomorphic 

cases. For example, for Sp(6, ~) and 7r~s a large discrete series representation 

(i.e. corresponding to a Weyl chamber with no simple compact roots), a, b = 4, 2 

or 2,4. 

3. C h a r a c t e r  formulas  

We begin by realizing representatives for the conjugacy classes .of Cartan 

subgroups via Cayley transforms based on T as in [12]. 

For S a set of strongly orthogonal non-compact roots of t, let c = c S be a Cayley 

transform associated to S. This is an element of Sp(2n, C), and [~ = ad(c)(t) is 

a Cartan subalgebra of sp(2n, C). Let b0 = b N sp(2n, ll~). The centralizer H of 

00 in Sp(2n, ~) is a Cartan subgroup of Sp(2n, •). The inverse image/7/ of H 

in Sp(2n, ll~) is a Cartan subgroup of Sp(2n, ~); H is abelian and equal to the 

centralizer of [~0 in Sp(2n, R). Every Cartan subgroup of Sp(2n, R) or Sp(2n, R) 

is conjugate to one obtained in this manner. 

We now write A+(T)  for the positive roots A + defined in Section 1. Then 

A+(H)  = c* - IA+(T)  is a set of positive roots of ~ (c*: ~* ~ t* is the adjoint 

of c). Then A+( H)  comes equipped with a set of strongly orthogonal real roots 

which we write 

(3.1) / ~ i , . . . , # m , 7 1 , . . . , %  
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where • 1 , - . . ,  tim are short and ")'1, �9 ' ' ,  ")'s are long. 

As is well known /~ is isomorphic to the cover of K ~_ U(n)  defined by the 

square root of the determinant [2]. This is the group {(g, z) [ g �9 U(n),  z 6 C*, 

det(g) = z2}. It follows that the compact Cartan subgroup T of Sp(2n, R) is 

connected and the exponential map ~-fp: to ~ T is surjective with kernel 

(3.2) {27r(a1,...,an) 6 tolai 6 Z, E a ~  6 2Z}. 
i 

For A C Ao + A (Definition 2.1) and t = e-~(X) 6 T, define e~(t) = e ~(x) as 

usual. 

For a Cayley transform c and H as above we write H = THA with TH = T N H  

and A = exp(ao -- [}0 N P0). (We identify the exponential of a0 in Sp(2n, JR) with 

exp(ao) �9 Sp(2n, R).) Then /4  "-" THA, and we may write elements o f / t  in the 

form 

(3.3)(a) g = e'-f~(Z) exp(X) (Z �9 to, X �9 a0). 

F o r A � 9  F a n d g � 9  

(b) e:~(g) = e~(t)e c*-lA(x) 

where g = t .  exp(X) e THA. Equivalently for A e 0", c*(A) �9 Ao + A define 

(c) e ~ (g) = e c" ~ (t)e ~(x). 

PROPOSITION 3.4: Let  c be a Cayley transform with corresponding Cartan sub- 

group PI o f  Sp(2n, R). Write "Yl, . . . ,  78 for the long real roots o f  A + ( H ) .  Let g 

be a regular element  o f  [-I satisfying 

(3.s) le '(g) I < 1, i= l , . . . , s ,  

Then 

(3.6) [0(l/)+)even - 0(r = ~-'~6W sgn(w) ewe~ 
_ 

Every regular element of Sp(2n, •) is conjugate to some g satisfying (3.5), 

so (3.6) determines 0(r - O(r completely. This is made explicit in 

Theorem 3.11. Note the denominator factors to Sp(2n, R). 
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Proof: Let ODS (resp. ODS) be the character of 7rDS (resp. #DS). By Theorem 

2.3, (3.6) is equivalent to 

(3.7) ODS(g) = n!(--1) q E,oeW sgn(w) e'~176 
1-Lea+(H)(e~/2 - e -~/2)  (g)" 

This follows more or less immediately from [12], [19], and the definition of 

coherent continuation. 

We first show for g in the smaller set (cf. 3.1): 

(3.8) le~'(g)l < 1 (i = l , . . . , m ) ,  

(3.9) oos(g) = (-1)q EwK sgn(w) e~~ 
1-LeA+(H)(e~/2 -- e-~/2)(g)" 

By [12] this holds with A0 replaced by p -- Ao + ( �89 �89 and ODS replaced 

by the holomorphic discrete series representation with infinitesimal character p. 

Then (3.9) follows by deforming p to A as in ([19], Corollary 3.8). By the version 

of coherent continuation of [6] this implies (3.7), still for g in the set (3.8). 

Now suppose leP'(g)l > 1 for some i. Let s~ = s~, E W(sp, I)). Also write s~ 

for the corresponding reflection in W(sp, t), i.e. reflection in the root c*/3~ E t*. 

Write g = e ~ ( Z )  exp(X) as in (3.3)(a). It follows from a calculation in Sp(2n, •) 

that g is conjugate via Sp(2n, ~) to g' = ~-p(s~Z)exp(siX). This calculation is 

entirely in the covering group of GL(n, R), on which the cocycle has the simple 

form ([11], Corollary 5.5(2)). The right hand side of (3.7) is invariant upon 

replacing g by g'. It follows that (3.7) holds without condition (3.8), and this 

completes the proof. 

The discussion at the end of the proof can be extended to consider reflections 

si in the long roots ~'i. It is easy to see that ~-~(Z)exp(X) (Z E to, X E a0) 

is conjugate via Sp(2n, R) to ~-X-~(Z)exp(s~X), rather than ~ ( s i Z ) e x p ( s i X ) .  

This reduces to the split Caftan subgroup [-I = THA of S~'L(2, R), and follows 

from the fact that TH -- Z /4Z is the center of S~'L(2, R). Furthermore, for any 

T E ) ~ 0 + A  

(3.10) er(~2-p(Z))/e~(6-~(siZ)) = e'y'/2(~-p(Z)) = • 

We state the resulting formula, at the same time treating the case of w(r  
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THEOREM 3.11: 

[0(r . . . .  - 0(r = l ~  sgn(1 + e+'Y'/2(g)) 
sgn(w)e wAo 

i = l  ( . ) ( e - / 2  - ( g )  

= sgn(1 + e+'Y~/2(9))i_[i=l(e + e )(g) n o q / 4  - -o~i /4  " 
i = 1  

Proof: The first line for r follows from the preceding discussion. With * 

denoting contragredient, 0 ( r  = 0(r = 0(r  The quotient 

~-i~is invariant under g -a, and e•'/2(g -1) e-'y'/2(9). The second line 9 

follows exactly as in the introduction (of. 1.5); there is no problem making this 

argument precise. 

Remark 3.12: The terms sgn(l+e+~'/2(g)) are constant on each connected com- 

ponent of a Cartan subgroup, and on the identity component of each 

Cartan subgroup are independent of r177 In particular, the restriction of 

0 ( r  - -  0(r to a neighborhood of the identity in Sp(2n, R) is indepen- 

dent of r 

We now make explicit choices of Cayley transforms and Cartan subgroups. 

Our discussion, as well as some notation, is similar to but not exactly the same 

as  [14] .  

For non-negative integers m, r, s with 2m + r + s = n we define a Cartan 
r n , r , s  subgroup H m'r's of Sp(2n, JR) with Lie algebra b0 , and a Cayley transform 

c: t -~ b m,',8. Write W = •2n = W I @ W 2 ~ W 3  where W1 is spanned by {ei, f i l l  _< 

i < 2m}, W2 by {ei, f i l 2m+l  < i < 2re+r} and W3 by ( e ~ , f j l 2 m + r + l  < i < n}.  

We identify Sp(Wi) and sp(W~) with their images in Sp(2n, R) and sp(2n, R). For 

zi = x~ + iy~ E C, l < i < m let 

(3.13)(a) bm'~176 ,Zm) = X �9 _ y  E ~5p (W1) 

Y - X  

where X = diag(xa , . . . ,  Xm) and Y = d iag(y l , . . . ,  Ym). For 0i E R (1 < i < r) 

we let 

(b) b~176 = - X  e sp(W2) 

with X = diag(01,. . . ,  0.), and for xi E ~ (1 < i < s) let 

(c) b~176 xs) = d iag(x l , . . . ,  x~, - x l , . . . ,  -x~) E sp(W3). 
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Taking the sum of these elements gives us an element 

(d) I~ m .... (zi,  �9 �9 zm, 0i , .  �9 Or, x i , . . . ,  x~) �9 sp(2n, R) 

and this defines a Car tan  subalgebra b~ 'r'~ of sp(2n, R). The  compact  Ca r t an  

no,n,o The  complexification [~m,r,~ is defined in the obvious subalgebra is to = ,o �9 

way. 

Let H m .... _ C *m x S ir • R *~ be the Car tan  subgroup of Sp(2n, R) with Lie 
algebra r n , r , s  I~ o , with inverse image /~m,r,8 in Sp(2n, R). These are representa- 

tives for the conjugacy classes of Car tan  subgroups of Sp(2n, R) and Sp(2n, R) 

respectively. The  compact  Car tan  subgroup is T = H ~176 

Given H . . . .  ~ let 

c~ = -~- - i I ; m  h m  

where I~m = antidiag(1, 1), let c2 = ~-~ ( I~ -iI~ " ' "  - i l r  Ir ] and l e t c = c l X C 2 X  

Is �9 Sp(Wic)  z Sp(W2c) x Sp(W3) C Sp(2n, C). Then  c is a Cayley t ransform 

for S "~'r,~, i.e. ad(c)(t)  = om,r,~. 

Recall A + ( H  m'r'~) = c * - i ( A + ( T ) ) .  For i = 1 , . . .  , n  let a i  -- c*- i (2e i ) ;  these 

are the long roots  of A + ( H  m .... ). The  strongly or thogonal  real roots  ~i, ~/i (cf. 

3.1) are f~i = c-i(e2i-i+e2i)  (i = 1 , . . .m)  and ~i = c-i(2e2m+~+i) (i -- 1 , . . . ,  s). 

For later  use we compute  the Weyl reflections corresponding to  ~i, 7~- Write X 

as in (3.13)(d). T h e n / 3 i ( X )  = zi + 2i and "y,(X) = 2xi. Therefore  

(3.14)(a) s~, ( X )  = I~ . . . . .  ( z l , . . . ,  - ~ , . . . ,  zm,  0 1 , . . . ,  Or, Xl . . . .  , x~)  

and 

(b) 8~/i(X) = ~ . . . .  s ( z l , . . . , Z m , O l , . . . , O r , X l , . . . , - x i , . . . x s ) .  

We make the decomposi t ion (3.3)(a) more explicit. Write  9 �9 as 

(3.15)(a) g = t .  exp(X)  = ~x'-p(Z) exp(X) .  

Here 

X = bo ( x i , . . . , x m , 0 , . . . , 0 ,  c i , . . . , c ~ )  �9 ao (b) (x~,cj E R) 
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and 

(C) Z ---- [')~176 - y : , . . . ,  Ym, -Ym, 0: , . . . ,  0~, 7ok:,..., ~rks) + 

1 -- 6DO,n,O(27r , 0 , . . . , 0 )  
2 

for some y~, Oj E K ki E Z and 6 = +1. The parameter 6 has been chosen for 

later convenience (cf. Proposition 4.5). 

Remark 3.16: The choice of Z is not at all unique. I f r + s  ~ 0 we may 

assume 6 = 1 (by modifying the first term of Z if necessary). Only in the case 

2m = n, r = s = 0 is it necessary to take 6 = -1 .  In this case we can replace 

this term with the more natural 

Z' = O~176 7r, (--1)m+l~'); 

note that  ~ ( Z ' )  is a central element of Sp(2n, R) lying over - I  E Sp(2n, R). 

In these coordinates 

(3.17) sgn(1 + e • (9)) = (T sgn(ci)) k' 

(eL Theorem 3.11). 

We compute the character of the oscillator representation in these coordinates. 

Recall p(w) E W/r was defined in (2.8)(b). This also follows from ([14], w 7.8). 

PROPOSITION 3.18: Write g = t .  exp(X) as in (3.15). 

[0(r177177 
8 

-----(T1)n H (:Fsgn(c/))k'+l FI ~wewSgn(p(w))eW:L/2)(eC,,2 (g) 
i=: ax~ea+(H . . . . .  )~ - 

8 1 

----- (ZF1) n H ( T  sgn(ci)) k'+l [I?=:(ead4 - e-~,/4)(9)" 
i=1  

Proo~ Let Z0 = [~~176 ~r) and let z = e-~(Zo). This is a central element 

of Sp(2n, R) lying over - I  E Sp(2n,•). Then O(r = i • as is seen 

by considering the lowest K-type + ( � 8 9  �89 of 0(r177 On the other hand 

0(r (z) = --i• Therefore 

(3.19) [0(r + 0(r177 = i=Fn[0(r177 -- O(r 
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We compute the right hand side by Theorem 3.11. Replacing g by zg replaces 

Z (3.15)(c) by Z + Z0, hence k~ is replaced by ki + 1. This accounts for the 

(~sgn(ci)) term. Each term e~~ is multiplied by e~~ This is readily 

computed to be i n2 (--1) t(w) where t(w) is the number of sign changes in w. Note 

that ( -1)  t(~) = sgn(w) sgn(p(w)) withp as in (2.8)(b). Finally each non-compact 

root term in the Weyl denominator changes sign, giving a factor of (-1)  q. The 

constant is therefore iT ' in2(-1)  q -- (~=1) n. This proves the first statement. 

The second follows from the fact, left as an exercise, that the numerator equals 

I-[~(e ~/2 - e -~/2) 1-L(e ~,/4 + e-~/4) ,  where the first product is over the short 

positive roots. This completes the proof. 

4. D e t e r m i n a n t s  

We state as lemmas some straightforward calculations on the compact and split 

Cartan subgroups of SL(2, ]~), and the complex Caftan subgroup of Sp(4, IR). 

The proofs are left to the reader. 

Definition 4.1: For 8 E ]R let 

sgncos(O) 
((O)= sin(O) 

cos(0)#0, 
cos (0 )  = 0. 

LEMMA 4.2: For O E ~ let Zo = ~~176 = ( . 0  O O0), an element of the 

compact Caftan subalgebra to of s[(2, ~), and let te = ~'~(Xo) C SL(2, R). For 

a a r o o t o f t ,  

1 1 

- 2 c o s ( 0 / 2 )  (a) e a/4 -k e- 

Let to = P(te) e SL(2,]R). Then 

(b) det(1 + to) = 4cos2(0/2) _> 0 

and 

(c) v/det(1 + to) = ] det(1 + te)[�89 = 2cos(0/2)~(0/2). 



(b) 

and 

(c) 

LEMMA 4.4:  
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LEMMA 4.3: For co E R let X = b~176 = diag(co , -co) ,  an element  o f  the 

split Caf tan subalgebra ao o f  s[(2, R). For k C Z let Z = 0~176 E to, and 

write c = Co + zrik. Let  ac = e ~ ( Z )  exp(X)  e A =/_)o,o,1 C S~'L(2, ~). 

For a a root o f  a, 

1 1 
(a) eel/4 ~_ e_a /4  (ac) -- 2 cosh(c/2)" 

Let  ac = p(Sc) -- diag(e c, e -c)  E SL(2, R). Then 

det(1 + ac) = (2 cosh(c/2))  2 

[ det(1 + ac)[�89 = i k ( -  sgn(co))k2 cosh(c/2).  

For z C C let Z = [} l ,~176  E sp(4,•).  For ~ = •  let Zo be 

the e lement  L~A0~176 7r) of  the compact  Caftan subalgebra to o/sp(4 ,  R) (cs 

Remark  3.16). Let  [7 = e-x-p(Zo)e'xp(Z) E Sp(4, JR). With  q-/31, +/32 the long roots 
Of [) 1,0,0, 

1 8 
(a) (eZl/4 + e-~, /4)(eZ2/4  -+- e-Z2/4) (~) ---- 2(cosh(x)  q- 6cos (y ) ) "  

Let  g = P(.q) e Sp(4, R). Then 

(b) det(1 + g) = [2(cosh(x) +/~cos(y))] 2 > 0 

and 

(c) x/det(1 + g) = I det(1 + g)[�89 = 2(cosh(x) + 6 cos(y)). 

PROPOSITION 4.5: With  notation as in Corollary 3.18, 

I-[ir=l ~(0i /2)  I ' I ;=l  (-ki) kj ~ 
[0(~:k)even -- O(~-4-)odd](g) 

[ det(1 + g)[�89 

Proo/~ This follows immediately from Theorem 3.11 and Lemmas 4.2-4.4. 

Recall  (Remark 3.16) we may assume 5 = 1 except in the case 2m = n, r = 

s = 0 .  
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For the definition and properties of the Weil invariant "y(x, ~) we refer to ([11], 

Appendix). For x 6 R* let r = ~ / (x , r  This is a choice of square root of 

x and satisfies ~ = *v/~ *x/~(x, Y)R where (,)~ is the Hilbert symbol [13]. Also 

~/(X,r = "~(x,~bab 2) for all b 6 •*, and ~/(x, r  = 1 (x > 0) or =Fi (x < 0). 

We express the preceding result in terms of 7v/det(1 + g). In Lemmas 4.2 and 

4.4, ~r + g) = [ det(1 +g)[�89 whereas in Lemma 4.3 a short calculation gives 

~/'det(1 + g) = 3,((-1) k, r det(1 + 9)I�89 

Noting that ~,((-1) a, r  = (=Fi)k(-1) k(k-1)/2 gives the next result. 

PROPOSITION 4.6: With notation as in Proposition 3.18, 

1 r  11;=1 ( - 1 7 ,  
[0(r . . . .  - e(f)odd]( ) = 

~/det(1 + g) 

Note that the numerator is independent of O, and the role of r is solely in the 

branch of the square root. Finally we proceed as in the proof of Proposition 3.18 

to obtain a result for 0(r + 0(~)q-)odd (cf. [14], w Th6or6me 2). 

PROPOSITION 4.7: With notation as in Proposition 3.18, 

[O(r 4- O(r = (• ~ I'I~=l sgn(sin(Oi/2)) 1-I~=x (4-i) k' 6 
I det(1 - g)1�89 

5. Cocyc l e s  

In this section we write the Cartan subgroup H . . . . .  of Sp(2n, R) in terms of a 

certain cocycle. Proposition 4.6 then has a very simple form. 

Let 6~(,) be the "Rao" cocycle on Sp(2n,]~), i.e. the normalized +l-valued 

cocycle of [11]. Henceforth we let Sp(2n, ~) be the metaplectic cover of Sp(2n, R) 

realized explicitly via the Rao cocycle, i.e. as pairs (g;~) (g 6 Sp(2n, JR), e -- +1) 

with multiplication (g, e)(9', e') = (g9', ee'6~ (g, 9')). 
From the preceding results it is clear the calculation of the character of the 

oscillator representation restricted to a Cartan subgroup/~m,~,8 comes down to 

a calculation on SL(2, R) and Sp(4, R). We have written the Cartan subgroup 

/~m .... of Sp(2n, R) in terms of the exponential map e--~. To express our results 

in terms of the Rao cocycle, it is necessary to write e-~ in these terms. It turns 

out to be simpler to write the cover ~m,~,8 in terms of a closely related cocycle 

CH. The calculation of e ~  reduces as well to SL(2, R) and Sp(4, R). 
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Let x: Sp(2n, R) --* +1 be the map of ([11], Lemma 5.1). Recall some notation 

from Lemma 4.2: to = exp(X0) is an element of the compact Cartan subgroup 

T of SL(2, R). For x E R* let a~ = diag(x, ~), an element of the split Cartan 

subgroup A of SL(2, R). In the notation of Lemma 4.3, ac = a~o. Then X(ay) = 

sgn(y), and 

- sgn(sin(O)) sin(O) r O, 
(5.1) x(to) = cos(P) sin(P) = 0. 

Recall ( was defined in Section 4 (Definition 4.1). 

LEMMA 5.2: 

(5.2)(a) 

and 

(b) 

For ~x, ay E A, 

(c) 

For to, tr C T, 

ex (~ ,  ~y) = (x, y)R. 

In the notation of  Lemma 4.3, let 5c (c = co + ~rik) be an element of fI, and let 

ac = p(g~) = arc. Then 

(d) ac = (ac; (--1)k(k-1)/2). 

The restriction of the cocycle c2(, ) to the complex Cartan subgroup H 1,~176 of 

Sp(4, •) is trivial Let ~ = t .  exp(X) as in Lemma 4.4, with image g in/~1,o,o. 

Then 

(e) 

Proof: 

(5.3)(a) 

= (g; 5) 

By [11] (the Remark following Corollary 5.8), 

~l(to, t~) = (x(0), z(r162 x(0 + r 

where we have written x(O) = x(to). Statement (a) follows from a straightforward 

but tedious calculation. It is easier, however, to proceed by an indirect method 

which has the advantage of proving (a) and (b) simultaneously. 
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Write 6-~(Xo)  = (to, r for some ~: ~ ~ +1. To prove (b) we need to 

show r = ~(0). The condition that e ~  is a group homomorphism from to to 

:F gives 

(b) ~(0)r162 = ~l( to, tr162 + r 

for all 0, r Set 0 = r to conclude 

(c) ~p(O) -- ~ l ( t~ , t~ )  

which by (a) and elementary properties of the Hilbert symbol [13] equals 

Write e i~ = x + iy. For generic 0 we conclude 

(e) ~ ( O ) = s g n ( ( - y ) ( - 2 x y ) ) = s g n ( x ) = s g n c o s  ( ~ ) = ~  ( ~ )  

proving (5.2)(b) for generic 0. 

This argument holds provided x y  # O. If y -- 0 (5.3)(d) gives ~(0) = 

x ( x  2 _ y2) = x = cos(~ --- ~(o), whereas x = 0 gives r = ( -y ) (x  2 - y2) = 

y = sin(~ = ~(-~). This proves (5.2)(b), and (a) follows from (5.3)(b). 

Statement (5.2)(c) and the triviality of the cocycle on H 1'~176 follow immediately 

from ([11], Corollary 5.5(2)). 

Statements (5.2)(d) and (e) follow from (b), since the covering is essentially on 

T. Thus with 5c = e~(~rk)exp(eo) as usual, (b) implies ac = (ac; r and 

then (d) follows from the definition of ~. Finally if 6 = 1, (e) is immediate since 

the cocycle is trivial and H 1,~176 is connected. For 6 = -1  it follows from the fact 

that ~X--~(0~176 ~r)) ---- ( - I ; - 1 ) .  This completes the proof. 

Remark 5.4: Note that  although ((~) is not well defined on T, the product of 

the three terms on the right hand side of (5.2)(a) is well defined. If 0 --* ~(~) 

were well-defined on T, (5.2)(a) would say c is a co-boundary, which of course is 

not the case. The cocycle on T may be lifted to the universal cover R ~ T, and 

(5.2) (a) can be interpreted as an expression for this lift as a coboundary, pushed 

down to T. 
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It is an immediate consequence of (5.2)(b,d,e) and Proposition 4.6 that  on 

the compact or split Cartan subgroups of SL(2,•) or on the complex Cartan 

subgroup/~1,0,o of Sp(4, R) we have the simple formula 

s 
(5.5) [0(r - 0(r  -- ~/det(1 + g) 

With the appropriate cocycle on H . . . .  8, (5.5) extends to Sp(2n, R). As noted 

earlier, the calculations of the precedings sections reduce to SL(2, R) and Sp(4, R), 

ultimately because this is true of the second formula in Theorem 3.11. The 

natural cocycle on H . . . . .  is therefore "diagonal". 

Recall (Section 3) H . . . .  8 is isomorphic to C *m • S 1~ • ]R .8 , and we introduce 

coordinates on H . . . .  ~ accordingly: for zi E C*, u~ E S 1 and x~ C R*, we let 

(5.6) (a) H . . . .  s ( Z l ,  . . . , Z m ,  U l ,  . . . , U r ,  X l , - . - ,  X 8 )  

be the corresponding element of H m'r '8 .  More precisely, for w i  E C ,  Oi E R and 

c~ C ]~ + ~ r i Z ,  

(5.6)(b) H . . . . .  (e~~ , . . . , e w ~ ,  e i ~  . . . , e i~  e e l , . . . ,  e ~" ) 

is the exponential of the element 

(5.6) (c) o m ' ~ ' 8 ( W l ,  . . . , w i n ,  0 1 , . . . ,  0~,  c l , . . . ,  c8)  

of the complex Cartan subalgebra [)m,r,s.  

D e t l n i t i o n  5 .7 :  Let H . . . . .  _ C *m • S 1~ • R .8 be one of our chosen Cartan 

subgroups of Sp(2n, R). We define a cocycle CH(, ) on H to be the product of 

the cocycles on each factor obtained by restriction from SL(2, R) (to S a, R*) and 

Sp(4, R) (to C*). Define /:/ . . . .  8 to be the two-fold cover of H "~'~'8 defined by 

To be precise, suppose 

g = H m ' ~ ' 8 ( z l , . . . ,  z m ,  e i ~  e i~ X l , . . . ,  x s )  

and similarly 9'. Then 

S 

= 1-[  I I  
i = 1  i----1 

with 51(, ) given explicitly in Lemma 5.2. 

We will see/~m,~,~ is isomorphic to/~m,r,8 (Lemma 5.9). 
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Definition 5.8: 

Define 

Write g E H m'r'~ as in (5.6)(a-c). For 1 < i < r + s let 

]" x(te,), j = 1 , . . . , r ,  
xi(g) 

x ( c % _ . ) ,  j = r + l , . . . , r + s .  

T 0 ) =  H 
l<i<j~r+s 

Finally define a map 6:/?/ . . . . .  -*Sp(2n, R) by 

r = (9; 

The image of r is ~m,. , , .  

LEMMA 5.9: 

(1) For g, h E H . . . .  ~, 

5n(g, h) = cH(g, h )7 (g )v (h ) r (gh ) ,  

in other words cn(, ) restricted to H . . . . .  and CH differ by the coboundary  

o f  v. 

(2) r is an isomorphism between [ t  . . . . .  and ~t . . . . .  . 

(3) Write  ~ = i .  exp(X) = ~-p(Z) exp(X) E ~m,.,~ as in (3.15)(a-c), and let 

g = p(~). Then  

(5.10)(a) r  = (o; 

with 

(5.10)(b) e = ~ -1)a'(k*-l)/26. 
i=1 i=1 

Proof'. We consider (1). If H "~,r,8 has only one factor, i.e. H "~'''s -~ C*, S 1 or R*, 

this is precisely how CH(, ) was defined. In the case of two factors (1) becomes 

([11], Corollary 5.6). The general case follows by induction on the number of 

factors. Statement (2) is an immediate consequence of (1), and (3) follows from 

(5.2)(b,d,e) and the fact that  the cocycle CH is diagonal. 

Via r we identify H'~ .... and/?/m,~,8, and write the character of the oscillator 

representation as a function on the regular elements of/ : /m'"C 
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PROPOSITION 5.11: Let ~ = (g;e) be an element of [-I m,r's, with g a regular 

element of H m'€ Then 

[0(r - 0 ( r  - -  
~/det(1 + g) 

Proos This follows immediately from Proposition 4.6 and Lemma 5�9 

The following formula directly on /~m,~,8 C Sp(2n, R) (without recourse to 

/:/m,~,~) follows immediately from Lemma 5.9�9 

COROLLARY 5.12: Let (9; e) be a regular element of[-I . . . .  ~ C Sp(2n, R). Then 

[0(~))even __ 0 (~2)odd] (g ;  ~) __ (.T(g) 
~/det(a + 9) 

6. T h e  c o m p l e x  case  

The corresponding results for the oscillator representation of the complex group 

G = Sp(2n, C) are much easier, and easily read off from [14]. For the sake of 

completeness we include the statement. 

Write w = weven • a)odd for the oscillator representation of G. This is unique 

up to isomorphism. Write 0 = 0ewn + 0odd for its character. 

We identify a Cartan subgroup H of G with C *'~ as usual. We also identify 

00 -- Lie(H) and 0~ with C ~. For A1, A2 E C ~ satisfying A1 - A2 E 27riZ n the 

standard module X(A1, A2) [20] is defined. Let A -- (n �89 3, �89 Then (A, A) 

is the infinitesimal character of the oscillator representation, and X(A, A) contains 

W~v~n as a constituent�9 The coherent continuation action of the Weyl group W 

of type Cn is defined on representations with this infinitesimal character, and 

w.  X(A,A) = X(wA, A). 

PROPOSITION 6.1: 

E W"  X ( ) ~ ,  )t) : (Meven --  ~)odd �9 
wET 

This may be proved in the same way as Theorem 2.3. For another proof see 

([14], w As an immediate consequence we conclude: 

PROPOSITION 6.2: For g a regular element of H, 

(0 . . . .  - -  0odd)(g) = Y'~~W• sgn(w) e~~ 
~weWxW sgn(w) ew(p'p) (g)" 

Finally, proceeding as in Section 4 we obtain: 
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PROPOSITION 6.3: For g a regular element of H, 

1 
(0 . . . .  - 0odd)(g) -- i det(1 + g)l 

Alternat ively we may embed Sp(2n, C) in Sp(4n, •), taking H - C *n to H n'~176 

Noting tha t  the oscillator representat ion of Sp(4n, R) restricts to the oscillator 

representat ion of Sp(2n, C), this follows from Proposi t ion 4.5. This also follows 

by taking - g  in ([14], w Th~or~me 1). 
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